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Laudatio
It is indeed a great pleasure to celebrate the 60th birthday of a trio of Czech and Slovak quantum
chemists, Professors Petr Čársky, Ivan Hubač, and Miro Urban and to congratulate them on their
many achievements, as well as to tell them how much their scientific contributions are appreciated
and their personal friendship is valued. It has been a true delight for the senior co-author of this paper
to take part in the Ph.D. Thesis supervision for two of them, and to watch their development during
the intervening years. We all certainly look forward to their continued involvement in our scientific
endeavours, since – to quote M. Émile Picard1 – “ ...l'âge de la retraite pour le professeur ne sera pas
l'âge de la retraite pour le savant.” In the future, we trust to see many important papers signed with
their names and those of their students, and we wish them all only the best in their personal and
professional lives.

The externally corrected coupled-cluster methods with singles and doubles (ecCCSD), which
exploit some independently available wave function as a source of higher-than-pair clusters,
are considered. The focus is on methods that employ a modest-size multireference (MR) con-
figuration interaction (with singles and doubles, CISD) wave function as the external source.
Both the amplitude- and energy-corrected CCSD methods are employed, the former correct-
ing the standard single reference (SR) CCSD equations for triples and quadruples, while the
latter accounts for the nondynamic correlation effects when evaluating the energy by em-
ploying the MR CISD wave function in lieu of the single determinantal (usually
Hartree–Fock) reference in the asymmetric energy formula. The performance and relation-
ship of both types of approaches is illustrated by computing the rotational and vibrational
energy levels using the potential generated by these various methods and by comparing the
calculated spectra with the experimental ones for the simplest first-row hydride, namely the
LiH molecule. A special attention is paid to the role of core-correlation effects, in which case
we also consider the HF molecule.
Keywords: Coupled-cluster methods; Multireference configuration interaction;
Ro-vibrational spectra; LiH; HF; Ab initio calculations.

During the late sixties it became abundantly evident that the Hartree–Fock
(HF) approximation2–4, in spite of its conceptual importance and practical
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usefulness, is unable to supply reliable and accurate information concern-
ing many aspects of the molecular electronic structure. In particular, the
so-called restricted HF (RHF) potential energy surfaces or curves invariably
tend towards a wrong dissociation limit when breaking true chemical
bonds, and the corresponding RHF dissociation energy may even become
negative, as first realized in the well-known case of the F2 molecule5. The
situation becomes even more serious when considering certain nonenergetic
properties (cf., e.g., refs6,7).

As with any independent particle model (IPM), the inadequacy of the HF
approximation stems from its inability to properly account for the singular
nature of the Coulomb potential, and thus to properly describe the many-
electron correlation effects. Consequently, all present-day nonempirical
quantitative studies of the molecular electronic structure exploit various
post-HF methods. These are basically of two types, namely variational or
perturbative.

Here we hasten to say that all ab initio approaches to the molecular elec-
tronic structure are based on model Hamiltonians. Even when we rely on
the Born–Oppenheimer approximation and ignore all relativistic effects,
the problem is unmanageable at the exact level once more than two elec-
trons are involved, so that all molecular applications are based on models
that are defined on finite-dimensional subspaces of a proper N-electron
Hilbert space. In ab initio approaches, these subspaces – and the correspond-
ing model Hamiltonians – are implied by the choice of the atomic orbital
(AO) basis set, spanning the one-electron space, which in turn defines the
N-electron space employed. The quality of the results obtained crucially de-
pends on both the adequacy (essentially the size) of the AO basis set and
the post-HF method employed. Needless to say that most post-HF ap-
proaches use the HF wave function as a reference.

The variational post-HF approaches are represented by various configura-
tion interaction (CI) methods that exploit the Ritz variation principle and
the linear Ansatz for the wave function in terms of the IPM states (or con-
figurations). Unfortunately, the size of the CI problem, given by the dimen-
sion of the N-electron space employed, grows rapidly with the size of the
system and the dimension of the one-electron space used, so that it is im-
perative to use truncated CI expansions. This introduces the lack of size-
extensivity and the related lack of dynamic correlation due to highly excited
configurations. These limitations may be partially avoided by exploiting
the multireference (MR) CI methods. The MR CI (usually MR CISD) meth-
ods are particularly beneficial when handling a manifold of quasidegenerate
electronic states, which is invariably the case when exploring the potential
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energy surfaces or curves in the domain of geometries involving highly
stretched or broken chemical bonds.

In fact, the MR methods are indispensable to handle the static correlations
due to the degeneracy of the states considered and are likewise very effi-
cient to account for nondynamic correlations arising in quasidegenerate situa-
tions. Yet, to account for dynamic correlation effects requires the use of CI
spaces of very high dimensions. For this reason, one generally reverts to a
post hoc account of the dynamic correlation and size-extensivity (usually via
the low-order perturbation theory and various Davidson-type corrections).

The methods based on the many-body perturbation theory (MBPT) (cf.
refs8–10) are in many aspects complementary to the variational approaches.
In their Rayleigh–Schrödinger version, they are universally size-extensive at
any level of truncation, but – at least in their single reference (SR) version –
are unable to account for nondynamic correlations once the quasi-
degeneracy sets in. The finite-order MBPT methods are limited to the third,
or at most the fourth, order in view of the rapidly increasing computational
demands. Even though already the second-order results provide a wealth of
useful information, and the fourth-order results are often sufficiently accu-
rate, there are many instances when selective higher-than-fourth-order
terms make a non-negligible contribution. This is the main reason for a
widespread use of the coupled-cluster (CC) approaches11–14 that exploit the
exponential cluster Ansatz for the wave operator, thus enabling the summa-
tion of certain classes of the MBPT diagrams to an infinite order. This is au-
tomatically achieved by solving the energy-independent CC equations,
which can be viewed as recursion formulas for the generation of higher-
order MBPT contributions of a certain kind on the basis of the lower-order
ones.

In many instances, such as the nondegenerate, closed-shell or high-spin
open-shell ground states, it is adequate to truncate the CC expansion at the
pair cluster level (CCSD approximation). To achieve the so-called chemical
accuracy of ≈1 kcal/mol, at least a perturbative account of triples may be re-
quired via the CCSD(T) approach15,16. Needless to say that the full account
of triples (and, of course, quadruples) is again computationally too de-
manding, except for small systems. Unfortunately, once the quasi-
degeneracy sets in, the importance of higher-than-pair clusters rapidly
increases, causing the CCSD results to deteriorate, while CCSD(T) breaks
down completely (cf., e.g., ref.14).

Although much work has been devoted to the MR CC approaches (for an
overview, see ref.17 and references therein), and two genuine bona fide
methods (referred to, respectively, as the valence-universal or Fock-space and
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state-universal or Hilbert-space approaches) have been developed, their prac-
tical exploitation is severely limited not only by the complexity of the re-
quired algorithms and codes, but also by various intrinsic impediments,
such as the intruder state problem, multiplicity and genealogy of solutions,
etc. (cf. ref.17). In any case, no general-purpose codes implementing genuine
MR CC approaches are presently available and most researchers center their
attention on the so-called state-selective or state-specific MR CC methods
that focus on one state at a time (cf. also refs18–21 and references therein).
Such approaches are also the subject of this contribution.

BASIC FORMALISM AND NOTATION

In the standard SR CC method, the exact electronic wave function |Ψ〉, de-
scribing some nondegenerate, lowest-lying (for a given symmetry species)
state, is represented via the so-called cluster expansion relative to some IPM
state |Φ0〉 that represents a reasonable approximation to |Ψ〉 (usually the
RHF state). In other words, one employs the exponential cluster Ansatz for
the wave operator W that transforms |Φ0〉 into |Ψ〉, |Ψ〉 = W|Φ0〉 , namely

|Ψ〉 = eT |Φ0〉 , 〈Φ0|Φ0〉 = 〈Φ0|Ψ〉 = 1 , (1)

where the cluster operator T is given by the sum of its n-body connected
components Tn (cf. refs11–14)

T Tn
n

N

=
=

∑ .
1

(2)

The n-body operators Tn are in turn represented via a linear combination of
the n-fold excitation operators Gi

n( ) relative to |Φ0〉 ,

T t Gn i
n

i

M

i
n

n

=
=
∑ ( ) ( ) ,

1
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where t i
n( ) are the n-body connected cluster amplitudes defining Tn, while

| |( ) ( )Φ Φi
n

i
nG〉 = 〉0 are the n-times excited IPM states or configurations rela-

tive to |Φ0〉 (either spin-adapted or not) that span the Mn-dimensional
n-times excited subspace of the N-electron space considered.

The exponential nature of the CC Ansatz for |Ψ〉, Eq. (1), implies the
size-extensivity of the resulting formalism regardless the truncation level
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employed, which is not the case when we employ the linear CI Ansatz for
|Ψ〉, i.e.,

|Ψ〉 = C|Φ0〉 = Cn
n

N

| ,Φ0
0

〉
=
∑ C0 = 1 (4)

where we again employ the intermediate normalization for |Ψ〉 and where
the n-th order excitation operators Cn are similarly represented as in Eq. (3)
with t i

n( ) replaced by the CI coefficients ci
n( ) .

Comparing both expansions, Eqs (1) and (4), we easily find the relation-
ship between the CI excitation operators Cn and the corresponding cluster
operators Tn, namely

C T Tn n i
n i

n

= +
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p

P

, (5)

where the sum extends over all nontrivial, distinct partitions Pn of n, Pn ≡
{ ... }1 21 2n n nn n , n = ∑ =i

p
iin1 , 0 ≤ ni ≤ n, 1 ≤ p < n, or, explicitly,
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(6)

Thus, each higher-than-one-body CI excitation operator Cn consists of the
connected cluster component Tn of the same order, as well as of the discon-
nected component(s) involving products of the lower-order cluster operators.

The CI, and particularly the CC Ansätze considerably simplify when we
employ the maximum overlap or Brueckner orbitals, in which case the
monoexcited components vanish, i.e.,

C1 = T1 = 0 , (7)

so that C2 = T2, C3 = T3, and the first disconnected component appears at
the quadruply-excited level,
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C T T4 4
1
2 2

2= + (8)

Now, the pair clusters represent generally the most important contribu-
tion to T and in the absence of quasidegeneracy are responsible for 94–96%
of the correlation energy. In fact, when Eq. (7) holds, only the pair clusters
T2 directly contribute to the energy. The next important contribution,
amounting to about 1–3% of the correlation energy, is due to the triples,
while quadruples (and singles when not using the Brueckner orbitals) con-
tribute only about 1% or less. Moreover, while the quadruple contribution
is almost entirely due to the disconnected 1

2 2
2T clusters, the triple contribu-

tion is mainly due to the connected T3 component, as first shown in ref.22

Thus, in nondegenerate situations, the approximation T ≈ T2 (CCD
method) or T ≈ T1 + T2 (CCSD method) yields very good results and, in or-
der to achieve chemical accuracy, one can account for T3 perturbatively via
CCSD(T). Once the quasidegeneracy sets in, however, the importance of the
connected, higher-than-pair clusters (i.e., T3, T4, etc.) increases, and we can
no longer neglect these clusters or even treat them perturbatively.

In contrast to variational CI method, the cluster amplitudes t i
n( ) (or, simply,

ti) are determined by solving a set of energy-independent CC equations that
are obtained by suitably projecting the Schrödinger equation H|Ψ〉 = E|Ψ〉,
premultiplied with the inverse of W, onto the excited state manifold
{|Φi

n( ) 〉}, i.e.,

〈 〉 = = =−Φ Φi
n T T

ne He n N i M( ) | | , ( , ... , ; , ... , )0 0 1 1 (9)

while the energy is obtained by projecting onto the reference |Φ0〉 ,

E e He HeT T T= 〈 〉 = 〈 〉−Φ Φ Φ Φ0 0 0 0| | | | , (10)

so that

∆ Φ Φ Φ ΦE E H H T T T= − 〈 〉 = 〈 + + 〉0 0 0 1 2
1
2 1

2
0| | | ( )| (11)

represents the correlation energy assuming that |Ψ0〉 is a HF reference (cf.,
e.g., ref.14). Note that, in general, the energy E is given by the asymmetric
energy formula
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E H= 〈 〉 〈 〉Ξ Ψ Ξ Ψ| | / | , (12)

where |Ξ〉 represents any state that is not orthogonal to |Ψ〉. Clearly, in the
present case, the expression for the energy E, Eq. (12), takes the form of
Eq. (10) when we set |Ξ〉 = |Φ0〉 and use the cluster Ansatz, Eq. (1), for |Ψ〉.

Now, similarly as in the CI case, Eq. (9) represents the chain of CC equa-
tions for n = 1, 2, ..., N. Since the disconnected terms do not contribute (cf.
refs14,17), so that

〈 〉 = 〈 〉 = = =−Φ | Φ Φ | Φi
n T T

i
n T

Ce He He n N i( ) ( )| | , ( , ... , ;0 0 0 1 1, ..., )M n (13)

where the subscript C implies that only connected terms are to be retained,
the CC chain of equations takes the form

〈 + + + + + + 〉 =
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(14)

This chain is closely related to the corresponding CI chain

〈 + + + + 〉 = 〈− − + +Φ Φ Φ Φi
n

n n n n n i
n

nH C C C C C E C( ) ( )| ( )| | |2 1 1 2 0 0 〉
= =

,

( , ... , ; , ... , )n N i M n1 1
(15)

where Cn = 0 if n < 0 or n > N. Indeed, replacing Cn by their CC equivalents,
Eq. (6), and realizing that the disconnected terms on the left-hand side of
Eq. (15) are exactly canceled by the right-hand-side energy-dependent term
(cf. ref.23 for details), we obtain the CC chain, Eq. (14). Clearly, without the
truncation, both chains are equivalent, so that the full CI (FCI) and FCC
both represent the exact solution for a given finite-dimensional ab initio
model.

Unfortunately, FCI or FCC can only be carried out for relatively small
model systems and in most actual applications one has to rely on truncated
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schemes. This is done by simply decoupling the full CI or CC chain at a
given excitation level, say m, by neglecting the higher-order terms, i.e., by
setting Cm+1 = Cm+2 = 0 or Tm+1 = Tm+2 = 0. When m = 2, we get the ubiqui-
tous CISD or CCSD methods, respectively. In the former case, we diago-
nalize the corresponding principal submatrix of the FCI matrix, while in
the latter case, we solve a nonlinear and nonhomogeneous algebraic system
of equations of the type

a b t c t ti ij j ijk j k
j kj

+ + + =
<
∑∑ ... ,0 (16)

and subsequently evaluate the energy by using the one- and two-body am-
plitudes in Eq. (10) or (11).

As already pointed out, CCSD provides an excellent approximation,
which can be further improved by a perturbative account of triples. Unfor-
tunately, when the state considered becomes quasidegenerate, as is invari-
ably the case when considering stretched geometries or when breaking true
chemical bonds, the higher-than-pair clusters start to play an important
role and their perturbative account breaks down. Thus, CCSD(T) becomes
entirely inadequate even when CCSD still performs reasonably well (cf.,
e.g., ref.14). Moreover, when we dissociate multiple bonds, say the triple
bond in the N2 molecule, even the hexuples are required for a proper de-
scription.

It should be noted that the inadequate performance of CCSD when
breaking chemical bonds stems from the lack of size-consistency of the
RHF, or generally IPM, reference. It is well known that even when breaking
a single bond, say in the H2 molecule, the RHF wave function tends to a
wrong dissociation limit involving a mixture of covalent and ionic states.
In many cases, one can employ an unrestricted HF (UHF) wave function [of
the different-orbitals-for-different-spins (DODS) type] to achieve the correct
dissociation. Unfortunately, this solution is hardly satisfactory when we
wish to generate entire potential energy surfaces or curves, since the UHF
solution generally exists only within a limited range of geometries, so that
the resulting potentials are nonanalytic at the onset of the singlet-triplet in-
stability (cf. ref.24), not to mention other shortcomings of such broken-
spin-symmetry wave functions (cf. ref.14).

Although a proper account of both dynamic and nondynamic correla-
tions in the presence of the quasidegeneracy can only be achieved by rely-
ing on genuine MR descriptions, much can be achieved to extend the
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validity and usefulness of the SR CCSD method by relying on the state-
selective or state-specific MR CC approaches. Here also belong the externally
corrected CCSD (ecCCSD) methods which we consider next.

EXTERNALLY CORRECTED CCSD METHODS

Since the CCSD method is well suited for the description of dynamic corre-
lation effects, while in the presence of quasidegeneracy it fails to account
for nondynamic correlations – which in turn is reflected in the increased
role played by the T3 and T4 clusters – the basic idea of ecCCSD approaches
is to exploit some independent source of information concerning these
clusters. Such a source must efficiently describe the nondynamic correla-
tion and be size-consistent, while being easily accessible without an undue
computational effort.

The first attempt in this direction was undertaken a long time ago25 and
exploited, at least implicitly, the UHF wave function. More recently, an ex-
plicit use of the UHF wave function was studied26. Even though both ap-
proaches provide a greatly improved description in many situations (see
also ref.14 and references therein), the most serious shortcoming of the UHF
source is the complete lack of the T3 clusters25,26.

More recently, we have exploited valence-bond (VB) type wave functions
in ecCCSD approaches with a considerable success27. Unfortunately, we
were able to carry out this study only at the semiempirical level due to the
lack of suitable ab initio VB codes. For this reason we also examined the
possibilities offered by the complete active space (CAS) self-consistent field
(SCF) or CAS FCI wave functions28,29, the option also suggested by
Stolarczyk30. All these attempts proved to be very promising, particularly
for open-shell systems, in which case we have employed the fully spin-
adapted CCSD method that is based on the unitary group approach
(UGA)14,31. Nonetheless, by far the most useful external source turned out
to be a modest-size MR CISD wave function that is based on an M-dimen-
sional reference space. This led us to design the amplitude-corrected, re-
duced MR (RMR) CCSD method14,32–39 and, most recently, the energy-
corrected CCSD-[MR] method40–44. The latter approach was stimulated by the
work of Piecuch and Kowalski45,46 on the method of moments45,47, leading to
the MBPT-based renormalized and completely renormalized CCSD(T) meth-
ods46,48. In the following, we focus only on the MR CISD-based methods.

The main reasons for the utility of the MR CISD wave function as the ex-
ternal source for the ecCCSD methods may be summarized as follows:
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1. There is a definite complementarity between the SR CCSD and MR
CISD wave functions in their ability to account for, respectively, the dy-
namic and nondynamic correlations, as already alluded to above.

2. The MR CISD wave function can be easily re-expressed in the SR CI
form (relative to the RHF reference |Φ0〉) involving higher-than-pair excita-
tions.

3. There is a simple and well-defined relationship between the SR CC and
SR CI Ansätze, as given by Eq. (5) or (6).

4. By extracting the three- and four-body, connected, cluster amplitudes,
we automatically account for all higher-than-quadruply-excited (relative to
|Φ0〉) configurations that are present in the MR CISD wave function.

5. A modest-size MR CISD wave function (M = 2 to 8) contains only a
very small subset of the three- and four-body amplitudes.

6. Finally, in the m → N limit, we reach the FCI and FCC methods, both
yielding the same state and the same energy.

The MR CISD wave function that we usually employ is designed to prop-
erly achieve the size-consistency for the considered dissociation channel at
the minimum cost. This implies that we choose as small as possible refer-
ence space. Thus, for example, to dissociate a single bond, we need at least
two active orbitals (typically represented by the highest occupied and low-
est unoccupied molecular orbitals, i.e., by HOMO and LUMO) for the two
electrons, implying at most a four-dimensional reference space (depending
on the symmetry of HOMO and LUMO and the spin-adaptation employed).
In the challenging case of a triple-bond dissociation, we need generally to
distribute 6 electrons over 6 orbitals. In the singlet case with no spatial
symmetry present this implies already a 175-dimensional reference space.
However, we have shown34 that we can do with much smaller reference
spaces: For example, in the case of the nitrogen molecule dissociation, an
eight-dimensional reference space is quite adequate37.

We next outline two distinct ways of exploiting the MR CISD wave func-
tion for the correcting of the standard SR CCSD method.

Amplitude-Corrected CCSD

The basic impetus for this type of ecCCSD stems from the fact that the
CCSD approximation arises by the decoupling of the singly- and doubly-
projected set of CC equations from the rest of the full CC chain by neglect-
ing the T3 and T4 clusters, i.e., by setting
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T3 = T4 = 0 (17)

in Eqs (14). Such a decoupling is, of course, possible due to the fact that our
Hamiltonian involves at most two-body terms, so that doubles can interact
with at most quadruples. Thus, were we able to obtain the exact three- and
four-body cluster amplitudes, the CCSD decoupling could be made exact.
Indeed, using, for example, the T3 and T4 clusters that result from the clus-
ter analysis of the FCI wave function, and evaluating the T3- and T4-de-
pendent terms in the first and the second equations in the CC chain (14),
we obtain formally the CCSD equations whose solution will return the ex-
act T1 and T2 clusters, and thus the exact energy. Actually, we use this fact
to test our codes.

Now, once the quasidegeneracy sets in, the T3 and T4 clusters gain in im-
portance, so that when we use even the approximate values for the most
important three- and four-body cluster amplitudes, we achieve a superior
approximation to the standard SR CCSD method, in which these clusters
are completely neglected, Eq. (17). In other words, we employ the CC
Ansatz, Eq. (1), with

T T T T T≈ + + +1 2 3
0

4
0( ) ( ) , (18)

where Tn
( )0 , n = 3, 4 represent some a priori fixed approximation to Tn, n =

3, 4. In the RMR CCSD method, it is a modest-size MR CISD wave function
that is used for this purpose: Expressing formally this wave function as a SR
CI Ansatz (relative to the reference |Φ0〉), we carry out the cluster analysis
yielding the T3

0( ) and T4
0( ) clusters. We then evaluate, once and for all, the

terms to which these 3- and 4-body clusters contribute and correct accord-
ingly the CCSD equations, which have again formally the same form as the
standard CCSD equations, except for the actual values of the coefficients ai
and bij, Eq. (16).

Strictly speaking, the 〈 〉Φ Φi CHT( ) ( )| |1
3

0
0 and 〈 〉Φ Φi n CHT( ) ( )| |2 0

0 , n = 3, 4 terms
are added to the absolute term ai, Eq. (16), while the 〈 〉Φ Φi CHT T( ) ( )| |2

1 3
0

0

terms contribute to the linear bij coefficients, Eq. (16). However, since these
latter terms are generally less important (being entirely absent when the
Brueckner orbitals are employed), we can replace them by the terms
〈 〉Φ Φi CHT T( ) ( ) ( )| |2

1
0

3
0

0 , using the approximate T1
0( ) clusters that are a byprod-

uct of the cluster analysis of the MR CISD wave function. In this way, we
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only have to correct the absolute terms ai, Eq. (16), and deal with a much
simpler algorithm without hardly influencing the result27–29.

We can also view the amplitude-corrected ecCCSD method as an approxi-
mation to the CCSDTQ method, in which we set initially Tn = Tn

( )0 for n = 3
and 4, thus reducing it effectively to CCSD. Note however, that while
ecCCSD is capable of yielding, in principle, the exact FCI or FCC result (as-
suming that we use exact Tn clusters for Tn

( )0 , n = 3, 4), this is never possible
by solving CCSDTQ equations (unless we deal, of course, with a 4-electron
system when CCSDTQ is equivalent to FCC). In other words, the MR
CISD-based three- and four-body cluster amplitudes have implicitly “built
into” them higher-than-four-body effects, as long as these are present in
the MR CISD wave function. For example, when using a minimal eight-
dimensional reference space in the case of the N2 molecule34,37, we auto-
matically account even for the most important hexuply-excited terms.

The above remark could make the impression that we initially require
one iteration of the CCSDTQ method. However, this is not the case, since
the three- and four-body amplitudes that result by the cluster analysis of a
typical MR CISD wave function form only a very small subset of all triples
and quadruples. For example, when breaking a single bond and using an
active space involving HOMO and LUMO, say σ and σ* MOs, we deal with
a two-dimensional reference space (assuming that σ and σ* belong to differ-
ent symmetry species) that is spanned by the ground state configuration
|Φ0 〉 = |{...σ2}〉 and the biexcited (relative to |Φ0 〉) configuration |Φ1 〉 =
|{...(σ*)2}〉 , where we list explicitly only the active orbitals. The correspond-
ing MR CISD wave function, when expressed in the SR CISDTQ form rela-
tive to |Φ0 〉, involves quadruples that are doubles relative to |Φ1 〉. Now, the
number of these quadruples is approximately the same as the number of
doubles (relative to |Φ0〉), i.e., considerably less than is the total number of
quadruples. Likewise, even when larger reference spaces are employed, the
number of three- and four-body cluster amplitudes is much smaller than is
the dimension of the respective triply- and quadruply-excited components
of the relevant N-electron space.

Energy-Corrected CCSD

The above outlined RMR CCSD method represents an ecCCSD approach
that results by modifying the standard CCSD equations via a noniterative
incorporation of the T3- and T4-dependent terms, using the three- and
four-body cluster amplitudes extracted from the MR CISD wave function
via the cluster analysis. This incorporates the MR effects and ascertains a
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more physical decoupling of the CC chain of equations at the CCSD level
than does a simple neglect of the T3 and T4 clusters. By solving these cor-
rected CCSD equations, we obtain more reliable T1 and T2 clusters and thus
more precise energy. Hence the term amplitude-corrected approaches in con-
trast to those methods that rely on the standard SR CCSD amplitudes, such
as CCSD(T), and which we refer to as the energy-corrected methods [in the
CCSD(T) case, internally energy-corrected methods, since no external source
is employed]. This latter type of approaches received a new impetus thanks
to the above quoted developments by Piecuch and Kowalski45,46,48 (for the
relationship with the so-called variational and extended CC theories, see
ref.49). For our purposes, the essence, as well as the required formalism, of
the MR-CISD-based energy-corrected CCSD method is most easily described
by relying on the asymmetric energy formula, Eq. (12).

Note that Eq. (12) yields the exact energy when either |Ψ〉 or |Ξ〉 are exact
and incorporates both the CI and CC energy expressions as a special
case40,42. In the CC case, one sets |Ξ〉 ≡ |Φ0 〉, Eq. (10) or (11). Yet, it is im-
portant to realize that the same energy is obtained when |Ξ〉 involves, in ad-
dition to |Φ0 〉, any of the configurations | ( )Φi

n 〉 that define the truncated CC
scheme employed, since all such terms vanish in view of Eq. (13). Only
higher-excited configurations (in the CCSD case those with n > 2) will gen-
erate nonvanishing contributions to E. This was clearly shown by Piecuch
et al.46,48, who exploited the MBPT-type wave function for |Ξ〉 to define
their renormalized methods that efficiently correct the pathological behav-
ior of the above mentioned standard CCSD(T).

Our results obtained with the RMR CCSD method32–34,36–39 imply that
an efficient way to incorporate the absent nondynamic correlation effects
into the standard CCSD formalism is to rely on a suitable MR CISD wave
function. We have thus examined the results provided by the asymmetric
energy formula, Eq. (12), using the standard CCSD wave function for |Ψ〉,
|Ψ〉 ≈ |Ψ(CCSD)〉 , and various MR CISD wave functions for |Ξ〉. Interestingly
enough, we have often obtained in many cases practically the same results
as with the RMR CCSD method, using, of course, the same MR CISD wave
function in each case. Even better results are obtained when we employ an
RMR CCSD wave function for |Ψ〉 40, although this step significantly in-
creases the computational cost.

The complementarity of the CI and CC approaches in handling of dy-
namic and nondynamic correlations is also corroborated by the fact that
the energy obtained via the asymmetric energy formula, Eq. (12), can be in-
terpreted as either the CC (i.e., CCSD) energy plus the CI (i.e., MR CISD)
correction or as the CI energy plus the CC-based correction40,42. Indeed, us-
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ing the CCSD (or, in fact, RMR CCSD) wave function for |Ψ〉 and the resolu-
tion of the identity in Eq. (12), we easily find40 that (cf. also refs46,48)

E = E(CC) + ∆E(CC) , (19)

where

∆ Ξ Φ Φ Φ

Ξ

E N e e He

N e

T
i
n

i
n T T

in

( ( ) ( )| | | | ,

|

CC) = 〈 〉〈 〉

= 〈

−

>
∑∑ 0

2

T | .Φ0
1〉 −

(20)

Here E(CC) represents the CCSD (or RMR CCSD) energy and the sum extends
over all higher-than-doubly-excited configurations that are present in the
MR CISD wave function.

Focusing, instead, on a CI (i.e., MR CISD) wave function |Ξ〉, which we
simply represent in the form

| | ,Ξ Φ
Φ

〉 = 〉
∈
∑ ci

M
i

i

(21)

where M designates the relevant CI subspace of the chosen N-electron space
W, M = Span{|Φi〉} ⊂ W, we have that

H E Hi i

i

| | | | | ,Ξ Ξ Φ Φ Ξ
Φ

〉 = 〉 + 〉〈 〉
∈ ⊥
∑(CI)

M

(22)

where M⊥ is the orthogonal complement of M in W. It easily follows40 that

E = E(CI) + ∆E(CI) , (23)

where

∆ Ξ Φ Φ Φ
Φ

E N H ei i
T

i

(CI)

(IS)

= 〈 〉〈 〉
∈
∑ | | | | ,0

M

(24)

with M(IS) ⊂ M⊥ designating the first-order interacting space of M. The cor-
rection ∆E(CI) may thus be regarded as the CC-based Davidson-type correc-
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tion and, in fact, may be interpreted as the second-order PT correction to
E(CI) (ref.40).

ILLUSTRATIVE EXAMPLES

Both the RMR CCSD and the energy-corrected CCSD methods have been
thoroughly tested on various model systems32–44, including a challenging
problem of the triple-bond breaking as exemplified by the dissociation of
the N2 molecule37,40. Here we wish to illustrate the performance and capa-
bilities of these approaches by presenting some typical results concerning
the ground-state spectroscopic properties of two first-row hydrides, namely
the LiH and HF molecules. These molecules have been the subject of nu-
merous experimental and theoretical studies (cf. also refs33,43,44) and the
ground states of their most important isotopomers have been well charac-
terized by various spectroscopic techniques50–56. The comparison of the ex-
perimental and computed ro-vibrational energy levels and transition
frequencies constitutes an ultimate test for any theoretical method, since
even very small energy changes in the computed energy may lead to signifi-
cant errors in the spectral characteristics, particularly for high-lying levels
near the dissociation threshold.

Computational Details and Acronyms

For the single-bonded LiH and HF molecules, the MR effects arise near the
dissociation limit due to the orbital degeneracy of the σ bonding and σ*
antibonding MOs. Hence we use a four-dimensional model space M for the
required MR CISD. This space is spanned by the Hartree–Fock reference |Φ0〉 =
|{..., σα, σβ}〉, two singly-excited configurations |Φ1〉 = |{..., σ*α, σβ}〉, and |Φ2〉 =
|{..., σα, σ*β}〉 , and one doubly excited configuration |Φ3〉 = |{..., σ*α, σ*β}〉 .

Generally, a reference space involving M configurations is referred to as
the MR space, and the MR CISD method employing this reference space as
MR-CISD. Clearly, in our case M = 4. The RMR CCSD method that employs
MR-CISD wave function is characterized by the acronym MR-RMR CCSD, or
MR-RMR for short, and the corresponding energy-corrected CCSD method
by CCSD-[MR].

In all our calculations we employ correlation-consistent (cc), polarized,
Cartesian cc-pVXZ basis sets of Dunning et al.57,58, where X = D, T, and Q
characterize, respectively, a double-, triple-, and quadruple-zeta basis. The
Hartree–Fock MOs, and the required one- and two-electron integrals, have
been generated with the GAMESS 59 package, while all CI and CC results
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were obtained with our own codes. The ro-vibrational energy levels E(ν, J)
associated with the vibrational quantum number ν and the rotational
quantum number J have been generated via the numerical integration of
the radial Schrödinger equation for the nuclear motion using our theoreti-
cally determined potentials and the LEVEL codes of LeRoy60.

Spectroscopy of the LiH Ground State

We focus here on the LiH molecule for the following reasons:
1. For this small four-electron system, we can generate the FCI results

even for a relatively sizable basis set of a triple-zeta quality (cc-pVTZ). This
should enable us to assess the relative sizes of the errors due to the approxi-
mations inherent in the method employed vs those due to the basis set lim-
itations.

2. New, highly-precise spectroscopic data have been recently generated
for this system and its various isotopomers52. Here we present a few typical
results and the full treatment will appear elsewhere44.

3. To explore the role of the core-correlation effects, we shall examine the
first-row hydrides from both ends of the periodic table. The results for the
HF molecule, obtained with the frozen fluorine core, have been extensively
studied earlier43.

Let us first consider the FCI results obtained with the cc-pVTZ basis set58,
representing the exact result for this model, and compare them with those
obtained by approximate CI and CC approaches, as well as with the experi-
ment. The FCI/cc-pVTZ energies for 41 geometries that define the potential
energy curve (PEC) employed are listed in Table I (cf. also Table I of ref.44).
This PEC is compared with the CCSD, 4R-CISD, and CCSD-[4R] PECs, ob-
tained with the same basis set, in Fig. 1. (The 4R-RMR PEC is not shown,
since on the scale of the figure it coincides with the CCSD-[4R] PEC.)

We see from Fig. 1 that only the 4R-CISD potential substantially deviates
from the FCI one once the internuclear separation R increases beyond 1.5Re
or 2Re, where Re designates the equilibrium bond length. Indeed, in the vi-
cinity of the equilibrium geometry, R = Re, all four PECs practically coin-
cide, implying that we have to consider the entire range of geometries in
order to properly assess the performance of a given method. (Note that all
the potentials shown in Fig. 1 are shifted on the energy scale in order to co-
incide at R = Re.)

A very sensitive test is then provided by the computed vibrational energy
levels that are also shown in Fig. 1. We see that even the standard CCSD
method performs very well in this case and significant differences relative
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to the exact FCI values occur only for high-lying levels. Indeed, the differ-
ence between the FCI and CCSD vibrational energy levels amounts to less
than 1 cm–1 for levels up to and including ν = 3 and less than 10 cm–1 up to
ν = 11, but then steadily rises to about 150 cm–1 for the highest, ν = 22,
level. Remarkably enough, both 4R-RMR and CCSD-[4R] errors are consider-
ably smaller, being below 1 cm–1 for the first six levels, below 10 cm–1 up to
ν = 15, and reaching the maximum deviation of 23 to 24 cm–1 for the top-
most ν = 22 level, i.e., about six times smaller error than the CCSD one.

Interestingly enough, the 4R-CISD results are least accurate, slightly ex-
ceeding the 1 cm–1 error even for the ν = 0 level and eventually reaching an
almost 400 cm–1 error for ν = 21, which represents the highest-lying level
for this potential. It is thus noteworthy that the MR CISD method, which
provides us with the three- and four-body cluster amplitudes that signifi-
cantly improve the performance of the standard CCSD method in the
quasidegenerate region, performs itself so poorly. This deficiency must
clearly be ascribed to its inability to properly account for the dynamic cor-
relation effects.
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TABLE I
The FCI total energy E of LiH, obtained with the cc-pVTZ basis set, as a function of the
internuclear separation R

R, Å E, a.u. R, Å E, a.u. R, Å E, a.u.

1.0 –7.945930 2.4 –8.006381 3.8 –7.956245

1.1 –7.984079 2.5 –8.001057 3.9 –7.954950

1.2 –8.009188 2.6 –7.995880 4.0 –7.953875

1.3 –8.025048 2.7 –7.990902 4.1 –7.952988

1.4 –8.034310 2.8 –7.986164 4.2 –7.952259

1.5 –8.038850 2.9 –7.981700 4.5 –7.950785

1.6 –8.040025 3.0 –7.977536 4.7 –7.950204

1.7 –8.038837 3.1 –7.973693 5.0 –7.949684

1.8 –8.036026 3.2 –7.970188 5.2 –7.949481

1.9 –8.032129 3.3 –7.967030 5.5 –7.949299

2.0 –8.027525 3.4 –7.964221 5.7 –7.949228

2.1 –8.022482 3.5 –7.961755 6.0 –7.949164

2.2 –8.017189 3.6 –7.959619 6.6 –7.949109

2.3 –8.011786 3.7 –7.957791



Now, the cc-pVTZ basis set is sufficiently large to allow a meaningful
comparison with the experiment. Such a comparison is shown in Fig. 2,
which displays the experimental PEC (ref.50), derived via the inverted
perturbative approach (IPA) (cf. refs61–63), together with the FCI/cc-pVTZ
PEC of Fig. 1, the CCSD-[4R] PEC corresponding to the complete basis set
(cbs) limit obtained via the extrapolation procedure of Peterson and
Dunning, Jr.64 applied to the CCSD-[4R]/cc-pVXZ PECs for X = D, T, and Q
basis sets, and the CCSD-[4R]/cc-pVQZ PEC including the adiabatic correc-
tions for the H atom50 (cf. ref.44 for details). We immediately observe that it
is the FCI/cc-pVTZ potential, and the corresponding vibrational energy lev-
els, that deviate most from the experimentally determined values. Quanti-
tatively, these deviations steadily increase to about 66 cm–1 at ν = 13 and 14,
and then rapidly decrease to –230 cm–1 at ν = 22, passing through zero between
ν = 18 and ν = 19. Clearly, the 4R-RMR/cc-pVTZ or CCSD-[4R]/cc-pVTZ results
(that are not included in Fig. 2) behave in a very similar way as the FCI data
(see Fig. 1). On the other hand, the CCSD-[4R] results obtained with the
cc-pVQZ basis set (cf. ref.44), or even slightly better results, shown in Fig. 2,
that are obtained when we add the empirically determined adiabatic correc-
tions to our PEC (average deviation amounting to ≈16 cm–1 and, with the
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FIG. 1
Potential energy curves obtained with the FCI, CCSD, 4R-CISD, and CCSD-[4R] methods using
the cc-pVTZ basis set, and the corresponding vibrational energy levels
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exception of the topmost level, the maximum deviation to ≈30 cm–1), as
well as those obtained with the potential that has been extrapolated to the
cbs limit (average deviation being 12.5 cm–1 and the maximal one ≈24
cm–1), agree extremely well with experiment.

These results, together with those shown in Fig. 1, imply that at the
cc-pVTZ level the basis set errors significantly exceed those due to the ap-
proximations that are involved in either the 4R-RMR or CCSD-[4R] meth-
ods, both yielding almost identical results. Indeed, at the cc-pVTZ level, the
average deviation of the 4R-RMR or CCSD-[4R] vibrational term values from
the FCI ones is less than 9 cm–1, while the discrepancy between the FCI and
experiment is on average ≈52 cm–1. Once we improve the basis set to either
the cc-pVQZ or cbs level, we greatly improve the agreement with experi-
ment. Note also that the adiabatic corrections are relatively modest and
amount to only a few wave numbers (on average to ≈3 cm–1), the largest
correction being again for the topmost ν = 22 level (≈11 cm–1).
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FIG. 2
The experimentally determined potential energy curve and the corresponding vibrational en-
ergy levels obtained via the IPA method50 (solid curve and horizontal lines) and the corre-
sponding theoretically derived data using the FCI/cc-pVTZ method, as well as the CCSD-[4R]
method using either the complete basis set (cbs) limit extrapolation or the cc-pVQZ basis set
and adiabatic corrections. The potentials are shifted on the energy scale so that the energy
minimum corresponds to zero energy
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It also should be pointed out that the extrapolation towards the cbs limit
does not work as well for LiH as it does for larger systems (see, e.g., the re-
sults for the HF molecule43). This is related to the fact that there is a very
large difference between the double-zeta and triple-zeta potentials, and a
much smaller one for a yet larger basis set. Nonetheless, we observe a typi-
cal pattern in the performance of the standard CCSD and ecCCSD methods,
namely that the former method yields better agreement with experiment
than the latter ones when small basis sets are employed, while the reverse
holds once we increase the basis set size. In the LiH case, this is especially
valid for the top few vibrational levels where the quasidegeneracy effects
play the most significant role, as illustrated in Fig. 3, where we plot the dis-
crepancies ∆ν between the computed and experimental vibrational term
values Gν, ∆ν = Gν(calc) – Gν(exp), as a function of the vibrational quantum
number ν, computed with the standard CCSD and 4R-RMR methods and
the cc-pVXZ, X = D, T, and Q basis sets.
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FIG. 3
Differences ∆ν between the calculated and experimental vibrational term values, ∆ν = Gν(calc) –
Gν(exp), as a function of the vibrational quantum number ν, obtained with the standard CCSD
(dashed lines) and 4R-RMR CCSD (solid lines) methods, using the cc-pVXZ, X = D, T and Q ba-
sis sets, as well as with the potential extrapolated to the complete basis set (cbs) limit
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Other Isotopomers

In order to better assess the performance of ecCCSD approaches, we also
present in Tables II and III the comparison of the experimentally deter-
mined51,52 and computed vibrational energy levels for other isotopomers of
7LiH, namely 7LiD, 6LiH, and 6LiD. Table II lists the experimentally avail-
able vibrational term values Gν for the three isotopomers just mentioned
and the deviations δ from the computed values using the CCSD-[4R] poten-
tial obtained with the cc-pVQZ basis set. We also included in this case the
deviations δ+ that result when we add adiabatic corrections50 to the com-
puted CCSD-[4R]/cc-pVQZ potential. We see that the effect of the adiabatic
corrections is generally very small and becomes significant only for very
high vibrational quantum numbers that approach the dissociation limit.
We see again that the adiabatic corrections improve the agreement by about
2 cm–1 on average. Note that the differences from experiment amount on
average to only 2–4 cm–1 for the first 10 vibrational levels.

Very similar results are provided by the 4R-RMR method as shown in
Table III. Here we list only the results obtained with the potential includ-
ing the adiabatic corrections and we also give the data for the standard
7LiH isotope.

Transition Energies

The experimentally directly observed data are neither the PECs nor the vi-
brational term values, but the frequencies of spectral lines corresponding to
the allowed transitions between ro-vibrational levels. Recently, Bernath’s
group measured hundreds of ro-vibrational lines for the isotopomers 6LiH
and 7LiH, as well as for their deuterated analogues, with very high preci-
sion, using high-resolution Fourier-transform spectroscopy52. It is thus of
interest to compare our computed spectra with these primary data. For ob-
vious reasons we cannot present here the results for all the observed lines
and all isotopomers. However, a few typical examples will amply illustrate
the degree of agreement that can be achieved using the studied methods.

We only consider the main isotopic species, the 7LiH molecule, since the
results for other isotopomers are very similar, as already Tables II and III in-
dicate. We have chosen the fundamental (1,0) vibrational band (Table IV),
another ∆ν = 1 band associated with the largest vibrational quantum num-
ber observed, namely the (5,4) band (Table V), and finally, the strongest
overtone (2,0) band (Table VI). In each case, we list the experimentally
measured frequencies for all the observed lines in the P and R branches,
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TABLE II
A comparison of the experimental51 Gν(exp) and theoretical CCSD-[4R]/cc-pVQZ vibrational
energy levels for three LiH isotopomers. The theoretical results are presented as deviations δ
from the experimental values. The subscript “+” implies that the adiabatic corrections50

were added to the computed potential. All values are in cm–1

ν

7LiD 6LiH 6LiD

Gν(exp) δa δ+
b Gν(exp) δa δ+

b Gν(exp) δa δ+
b

0 524.7 0.3 0.2 705.1 0.4 0.2 534.3 0.3 0.2
1 1553.7 1.8 1.5 2078.4 2.2 1.6 1581.8 1.8 1.5
2 2557.3 2.4 1.9 3406.1 2.8 1.7 2602.9 2.3 1.9
3 3535.9 2.5 1.8 4688.8 3.0 1.6 3598.0 2.4 1.8
4 4489.7 2.4 1.7 5927.6 3.6 1.7 4567.5 2.4 1.7
5 5419.1 2.6 1.7 7123.1 4.8 2.6 5511.8 2.6 1.7
6 6324.6 3.1 2.0 8276.2 6.7 4.2 6431.2 3.1 2.1
7 7206.4 3.9 2.7 9387.2 9.3 6.4 7326.2 4.1 2.9
8 8064.8 5.2 3.9 10456.6 12.4 9.1 8196.8 5.4 4.1
9 8900.0 6.8 5.3 11484.5 15.8 12.2 9043.5 7.1 5.6

10 9712.1 8.8 7.1 12471.0 19.5 15.5
11 10501.3 10.9 9.1 13415.6 23.4 19.0
12 11267.6 13.3 11.4 14317.7 27.3 22.5
13 12011.1 15.9 13.8 15176.2 30.9 25.8
14 12731.6 18.5 16.3 15989.1 34.2 28.7
15 13428.9 21.3 18.9 16753.9 36.8 30.9
16 14102.8 24.1 21.6 17466.6 38.3 31.9
17 14752.7 26.9 24.2 18122.3 38.0 31.0
18 15378.0 29.5 26.7 18713.9 35.0 27.4
19 15978.0 31.9 29.0 19232.1 28.0 19.8
20 16551.4 34.0 30.8 19664.5 15.0 6.0
21 17096.8 35.5 32.2 19995.8 –8.1 –18.0
22 17612.5 36.2 32.7
23 18095.9 35.8 32.0
24 18544.4 33.9 29.9
25 18954.2 29.9 25.7
26 19320.8 23.3 18.8
27 19638.8 13.0 8.2
|δ10|av

c 3.1 2.3 6.1 4.1 3.2 2.4
|δ|av

d 16.9 14.7 18.0 14.4 3.2 2.4

a δ designates the deviation of the computed vibrational energy level obtained with the
CCSD[4R]/cc-pVQZ potential from the experimental value. b δ+ same as δ with the added
adiabatic corrections. c Absolute average deviation for the first 10 vibrational levels. d Abso-
lute average deviation for all levels.
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TABLE III
A comparison of the experimental51 Gν(exp) and theoretical 4R-RMR CCSD/cc-pVQZ vibra-
tional energy levels with added adiabatic corrections for four LiH isotopomers. The theoreti-
cal results are presented as deviations δ+ from the experimental values. All values are in cm–1

ν

7LiH 7LiD 6LiH 6LiD

Gν(exp) δ+
a Gν(exp) δ+

a Gν(exp) δ+
a Gν(exp) δ+

a

0 697.9 0.2 524.7 0.2 705.1 0.2 534.3 0.2
1 2057.6 1.6 1553.7 1.5 2078.4 1.6 1581.8 1.5
2 3372.5 1.8 2557.3 1.9 3406.1 1.7 2602.9 1.9
3 4643.4 1.6 3535.9 1.9 4688.8 1.6 3598.0 1.9
4 5871.1 1.8 4489.7 1.7 5927.6 1.8 4567.5 1.7
5 7056.6 2.6 5419.1 1.7 7123.1 2.7 5511.8 1.8
6 8200.4 4.2 6324.6 2.1 8276.2 4.3 6431.2 2.1
7 9303.0 6.3 7206.4 2.8 9387.2 6.5 7326.2 3.0
8 10364.7 9.1 8064.8 4.0 10456.6 9.3 8196.8 4.2
9 11385.9 12.2 8900.0 5.5 11484.5 12.5 9043.5 5.8

10 12366.4 15.6 9712.1 7.3 12471.0 15.9
11 13306.0 19.1 10501.3 9.4 13415.6 19.5
12 14204.1 22.7 11267.6 11.7 14317.7 23.2
13 15059.6 26.2 12011.1 14.1 15176.2 26.7
14 15870.8 29.4 12731.6 16.8 15989.1 29.9
15 16635.2 32.1 13428.9 19.5 16753.9 32.4
16 17349.5 33.7 14102.8 22.2 17466.6 33.8
17 18008.7 33.8 14752.7 25.0 18122.3 33.5
18 18606.6 31.6 15378.0 27.6 18713.9 30.7
19 19134.5 25.6 15978.0 30.1 19232.1 23.8
20 19581.1 14.1 16551.4 32.2 19664.5 10.5
21 19932.1 –6.9 17096.8 33.9 19995.8 –13.6
22 20169.8 –45.1 17612.5 34.7
23 18095.9 34.5
24 18544.4 32.9
25 18954.2 29.3
26 19320.8 23.0
27 19638.8 12.8
|δ10|av

b 4.1 2.3 4.2 2.4
|δ|av

c 16.4 15.7 15.3 2.4

a δ+ designates the deviation of the computed vibrational energy level obtained with the
CCSD[4R]/cc-pVQZ potential including the adiabatic correction50 from the experimental
value. b Absolute average deviation for the first 10 vibrational levels. c Absolute average devi-
ation for all levels.
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TABLE IV
The deviations of the computed transition frequencies from the experimentally (exp) ob-
served ones52 for the P and R lines of the (1,0) vibrational band of LiH, as obtained with the
CCSD-[4R] method and the cc-pVXZ (X = D, T, and Q) basis sets. The subscript “+” indicates
that the adiabatic corrections50 were added to the potential. All values are in cm–1

J

P branch R branch

exp D T Q Q+ exp D T Q Q+

0 1374.1 –25.9 7.8 1.8 1.4

1 1344.9 –25.5 7.7 1.9 1.4 1388.0 –26.1 7.8 1.8 1.3

2 1329.7 –25.2 7.7 1.9 1.5 1401.5 –26.3 7.8 1.8 1.3

3 1314.1 –24.8 7.6 2.0 1.6 1414.5 –26.4 7.8 1.8 1.3

4 1298.1 –24.5 7.6 2.0 1.6 1427.0 –26.4 7.7 1.8 1.3

5 1281.8 –24.1 7.5 2.1 1.7 1439.0 –26.5 7.7 1.8 1.3

6 1265.2 –23.6 7.4 2.2 1.8 1450.4 –26.5 7.6 1.8 1.3

7 1248.3 –23.2 7.3 2.3 1.9 1461.3 –26.4 7.5 1.8 1.4

8 1231.1 –22.6 7.2 2.4 2.0 1471.6 –26.4 7.5 1.9 1.4

9 1213.6 –22.1 7.1 2.5 2.1 1481.3 –26.3 7.3 1.9 1.4

10 1195.9 –21.5 6.9 2.6 2.2 1490.4 –26.1 7.2 2.0 1.5

11 1178.0 –20.9 6.7 2.7 2.4 1499.0 –25.9 7.1 2.0 1.5

12 1159.9 –20.3 6.5 2.8 2.5 1506.9 –25.7 6.9 2.1 1.6

13 1141.6 –19.7 6.3 2.9 2.6 1514.2 –25.5 6.8 2.1 1.6

14 1123.2 –19.0 6.1 3.0 2.7 1520.8 –25.3 6.6 2.2 1.7

15 1104.6 –18.3 5.9 3.1 2.8 1526.8 –25.0 6.4 2.3 1.7

16 1085.9 –17.6 5.6 3.2 2.9 1532.1 –24.7 6.1 2.3 1.8

17 1067.1 –16.9 5.3 3.2 3.0 1536.8 –24.3 5.9 2.4 1.8

18 1048.2 –16.2 5.0 3.3 3.1 1540.8 –24.0 5.6 2.4 1.9

19 1029.3 –15.4 4.7 3.4 3.2 1544.1 –23.6 5.3 2.5 1.9

20 1010.3 –14.7 4.4 3.5 3.2 1546.8 –23.2 5.0 2.5 2.0

21 991.2 –13.9 4.0 3.5 3.3 1548.8 –22.8 4.7 2.5 2.0

22 972.2 –13.2 3.6 3.5 3.3 1550.1 –22.4 4.4 2.5 2.0

23 953.1 –12.5 3.3 3.6 3.4

24 934.0 –11.7 2.9 3.6 3.4

25 915.0 –11.0 2.5 3.6 3.4

26 896.0 –10.3 2.0 3.6 3.4

27 877.0 –9.6 1.6 3.5 3.4

28 858.1 –8.9 1.2 3.5 3.3



and the deviations of the computed transition frequencies from the ob-
served ones as obtained with the CCSD-[4R] method and the three basis
sets considered, namely the cc-pVXZ bases with X = D, T, and Q. The devia-
tions obtained with the largest cc-pVQZ basis and including the adiabatic
corrections50 are listed in the column labeled by Q+.

We observe a systematic improvement of the agreement between the ob-
served and computed frequencies as the basis set is increased. The discrep-
ancies also vary smoothly as we progress towards larger and larger
rotational quantum numbers in each branch. For the largest cc-pVQZ basis
set considered, these discrepancies stay within 2 to 4 cm–1 for all ∆ν = 1
bands and only for the P branch of the (2,0) overtone band they range up
to ≈6 cm–1. These discrepancies are slightly improved (always by less than
1 cm–1) when the adiabatic corrections are added. Clearly, the computed
spectra provide an excellent representation of the experimental ones, with
an almost constant and very small systematic shift of at most 0.04% in the
transition frequencies.
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TABLE V
The deviations of the computed transition frequencies from the experimentally (exp) ob-
served ones52 for the P and R lines of the (5,4) vibrational band of LiH, as obtained with the
CCSD-[4R] method and the cc-pVXZ (X = D, T, and Q) basis sets. The subscript “+” indicates
that the adiabatic corrections50 were added to the potential. All values are in cm–1

J

P branch R branch

exp D T Q Q+ exp D T Q Q+

3 1144.9 –20.1 3.6 1.2 0.9

4 1130.6 –19.9 3.6 1.2 0.9 1244.9 –21.3 3.7 1.2 0.8

5 1255.4 –21.4 3.8 1.3 0.9

6 1101.2 –19.6 3.6 1.3 1.0

7 1086.1 –19.3 3.6 1.4 1.1 1274.8 –21.6 3.9 1.4 0.9

8 1070.7 –19.1 3.7 1.4 1.1 1283.8 –21.7 4.0 1.4 1.0

9 1055.1 –18.9 3.7 1.5 1.2

10 1039.2 –18.7 3.8 1.6 1.3

11 1023.1 –18.5 3.8 1.7 1.4

12 1006.9 –18.2 3.9 1.8 1.5

13 990.4 –18.0 3.9 1.9 1.6

14 973.9 –17.7 4.0 2.0 1.7

15 957.1 –17.5 4.1 2.1 1.8
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TABLE VI
The deviations of the computed transition frequencies from the experimentally (exp) ob-
served ones52 for the P and R lines of the (2,0) vibrational band of LiH, as obtained with the
CCSD-[4R] method and the cc-pVXZ (X = D, T, and Q) basis sets. The subscript “+” indicates
that the adiabatic corrections50 were added to the potential. All values are in cm–1

J

P branch R branch

exp D T Q Q+ exp D T Q Q+

1 2659.8 –49.1 12.2 2.5 1.6 2701.6 –49.7 12.2 2.4 1.6

2 2644.1 –48.8 12.1 2.5 1.7 2713.9 –49.7 12.2 2.4 1.6

3 2627.7 –48.4 12.1 2.6 1.8 2725.2 –49.7 12.1 2.4 1.6

4 2610.5 –47.9 12.0 2.7 1.9 2735.6 –49.7 12.1 2.5 1.6

5 2592.5 –47.4 11.9 2.8 2.0 2745.1 –49.5 12.0 2.5 1.7

6 2573.8 –46.8 11.8 2.9 2.1 2753.6 –49.3 11.9 2.6 1.7

7 2554.4 –46.2 11.6 3.0 2.3 2761.2 –49.1 11.7 2.7 1.8

8 2534.3 –45.5 11.4 3.2 2.4 2767.8 –48.7 11.6 2.8 1.9

9 2513.5 –44.7 11.2 3.3 2.6 2773.4 –48.3 11.4 2.9 2.0

10 2492.1 –43.9 11.0 3.5 2.7 2778.0 –47.9 11.2 3.0 2.1

11 2470.1 –43.0 10.8 3.6 2.9 2781.6 –47.4 11.0 3.1 2.2

12 2447.5 –42.1 10.5 3.8 3.1 2784.2 –46.9 10.8 3.3 2.4

13 2424.3 –41.2 10.3 4.0 3.3 2785.8 –46.3 10.5 3.4 2.5

14 2400.6 –40.1 9.9 4.1 3.5

15 2376.3 –39.1 9.6 4.3 3.7

16 2351.6 –38.0 9.2 4.5 3.9

17 2326.3 –36.9 8.8 4.7 4.0

18 2300.6 –35.8 8.4 4.8 4.2

19 2274.5 –34.6 8.0 5.0 4.4

20 2248.0 –33.5 7.5 5.1 4.5

21 2221.1 –32.3 7.1 5.3 4.7

22 2193.8 –31.1 6.6 5.4 4.8

23 2166.2 –29.9 6.1 5.5 5.0

24 2138.2 –28.8 5.6 5.6 5.1

25 2109.9 –27.6 5.1 5.7 5.2



Core-Correction Effects

Since in many calculations one decreases the number of explicitly corre-
lated electrons by freezing the core, we wish to examine this effect in the
LiH case, where the core electrons represent one-half of the total electron
number. For comparison, we also consider the largest first-row hydride, i.e.,
the HF molecule. Clearly, we can expect the effect of the frozen-core ap-
proximation to be the largest for the small LiH species, where the core rep-
resents a substantial part of the entire electronic structure.

We thus present in Table VII the differences between the computed and
experimental vibrational term values for the 7LiH molecule obtained with
all the electrons correlated, and with only the valence electrons correlated.
We observe that the core-correlation effects are quite significant, even
though not overwhelmingly so considering that in this case half of the
electrons are excluded by freezing the core. These effects steadily increase as
we proceed to higher and higher vibrational levels, amounting to ≈8 cm–1

for the lowest ν = 0 level and reaching 152 cm–1 for the top ν = 22 level. On
the relative scale, however, the effect is largest at the ν = 0 level, being twice
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TABLE VII
The deviation of the FCI/cc-pVTZ vibrational term values from the experimental ones for
7LiH when correlating all the electrons (all) and only the valence electrons (valence), as well
as their difference δ representing the core-correlation effects. All values are in cm–1

ν All Valence δ ν All Valence δ

0 4.0 –3.8 7.8 12 63.2 –29.3 92.5

1 11.7 –9.7 21.4 13 66.2 –31.8 98.0

2 16.0 –15.4 31.5 14 66.4 –37.0 103.4

3 18.9 –20.4 39.3 15 62.8 –45.9 108.7

4 21.7 –24.4 46.0 16 53.9 –60.0 113.9

5 25.0 –27.2 52.1 17 38.1 –81.0 119.0

6 29.1 –28.9 58.0 18 13.2 –111.0 124.2

7 34.1 –29.7 63.8 19 –23.1 –152.7 129.6

8 39.9 –29.7 69.6 20 –73.8 –209.3 135.5

9 46.2 –29.2 75.4 21 –141.9 –284.3 142.4

10 52.5 –28.6 81.1 22 –230.1 –381.6 151.6

11 58.4 –28.4 86.8



as large as the discrepancy between the computed and observed term val-
ues, while for the highest-lying level (ν = 22), this effect represents about
two-thirds of the discrepancy between the theory and experiment (even
though, for ν = 21 level, both effects are of the same size).

For the sake of comparison we present an analogous information for the
HF molecule in Tables VIII and IX. In this case we are unable to generate
the FCI results at the cc-pVTZ level. We thus present in Table VIII the vibra-
tional energy levels as obtained with the CCSD and CCSD-[4R] methods
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TABLE VIII
Vibrational term values for the HF molecule obtained with the CCSD and CCSD-[4R] meth-
ods and cc-pVTZ basis set when correlating all the electrons (all) and only the valence elec-
trons (valence), as well as their difference δ representing the core-correlation effects. All
values are in cm–1

ν

CCSD CCSD-[4R]

All Valence δ All Valence δ

0 0.0 0.0 0.0 0.0 0.0 0.0

1 4045.6 4037.8 7.8 4007.5 3999.7 7.8

2 7922.0 7906.4 15.6 7840.0 7824.4 15.6

3 11632.4 11609.2 23.2 11500.4 11477.1 23.3

4 15180.6 15150.1 30.5 14992.0 14961.6 30.4

5 18570.1 18532.6 37.5 18317.8 18280.7 37.1

6 21804.1 21759.9 44.2 21480.5 21437.1 43.4

7 24885.5 24835.0 50.5 24481.4 24432.3 49.1

8 27816.4 27759.6 56.8 27321.0 27266.3 54.7

9 30598.1 30535.0 63.1 29998.0 29938.1 59.9

10 33230.8 33161.4 69.4 32509.8 32444.7 65.1

11 35714.1 35638.1 76.0 34851.5 34781.3 70.2

12 38046.4 37963.5 82.9 37016.5 36941.1 75.4

13 40225.2 40134.8 90.4 38995.2 38914.3 80.9

14 42247.0 42148.5 98.5 40775.1 40688.3 86.8

15 44107.4 43999.8 107.6 42340.1 42246.9 93.2

16 45800.6 45682.8 117.8 43668.5 43568.1 100.4

17 47319.7 47190.1 129.6 44731.6 44623.0 108.6



when all electrons are correlated and when only valence electrons are corre-
lated (note that all the results given in ref.43 were obtained with frozen core
of the fluorine atom). We see that the differences δ, indicating the effect of
core electron freezing, are slightly larger for the standard CCSD approach
(although, there is practically no difference up to about ν = 7 level), and on
the absolute scale they are on the same level as for the LiH molecule. How-
ever, on the relative scale they are considerably smaller, since the top-level
vibrational energy for LiH (20 169.8 cm–1 for ν = 22) is less than one half of
that for the ν = 19 level of HF (49 026.5 cm–1).
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TABLE IX
Experimental (exp) and theoretical vibrational transition energies Gν+1–Gν for the HF mole-
cule as obtained with the CCSD and CCSD-[4R] methods and cc-pVTZ basis set when corre-
lating all the electrons (all) and only the valence electrons (valence), as well as their
difference δ representing the core-correlation effects. All values are in cm–1

ν expa
CCSD CCSD-[4R]

All Valence δ All Valence δ

0 3961.4 4045.6 4037.8 7.8 4007.5 3999.7 7.8

1 3789.4 3876.4 3868.6 7.8 3832.5 3824.7 7.8

2 3622.0 3710.4 3702.8 7.6 3660.4 3652.7 7.7

3 3458.8 3548.2 3540.9 7.3 3491.6 3484.5 7.1

4 3299.4 3389.5 3382.5 7.0 3325.8 3319.1 6.7

5 3142.8 3234.0 3227.3 6.7 3162.7 3156.4 6.3

6 2988.5 3081.4 3075.1 6.3 3000.9 2995.2 5.7

7 2835.8 2930.9 2924.6 6.3 2839.6 2834.0 5.6

8 2683.5 2781.7 2775.4 6.3 2677.0 2671.8 5.2

9 2530.5 2632.7 2626.4 6.3 2511.8 2506.6 5.2

10 2375.5 2483.3 2476.7 6.6 2341.7 2336.6 5.1

11 2216.5 2332.3 2325.4 6.9 2165.0 2159.8 5.2

12 2051.7 2178.8 2171.3 7.5 1978.7 1973.2 5.5

13 1877.8 2021.8 2013.7 8.1 1779.9 1774.0 5.9

14 1691.7 1860.4 1851.3 9.1 1565.0 1558.6 6.4

15 1488.1 1693.2 1683.0 10.2 1328.4 1321.2 7.2

16 1261.5 1519.1 1507.3 11.8 1063.1 1054.9 8.2

a From ref.56



Of course, this effect is much smaller when we consider the experimen-
tally observed transition frequencies, as shown in Table IX. Indeed, the
largest difference δ between the transition energies obtained with all the
electrons and with only the valence electrons correlated amounts to about
≈10 cm–1 at the cc-pVTZ level. This difference is again slightly smaller (by
≈4 cm–1) for the highest considered level when the CCSD-[4R] method is
used rather than the standard CCSD.

CONCLUSIONS

On the basis of the above presented illustrative examples, as well as from
the more comprehensive results given earlier32–44, we can conclude that the
ecCCSD approaches are capable of significantly extending the range of ap-
plicability of the standard CCSD method once the quasidegeneracy effects
become more significant and the nondynamic correlation plays a non-
negligible role or, in fact, a rather essential role as in the case of the N2 mol-
ecule37,40. Both the RMR CCSD and CCSD-[MR] methods that employ a
modest size MR CISD wave function as the external source of information
concerning the higher-than-pair clusters, are capable of yielding very accu-
rate potentials over the entire range of geometries and thus highly accurate
ro-vibrational spectra.

Remarkably enough, both the RMR CCSD and CCSD-[MR] methods yield
very similar results in spite of their entirely different design and structure,
as long as we employ the same external-source wave function. This clearly
indicates that the nondynamic correlation effects can be accounted for ei-
ther by appropriately correcting the one- and two-body amplitudes via RMR
CCSD or by projecting onto the MR CISD wave function when computing
the energy via the CCSD-[MR] method.

Our results also reaffirm the importance of the basis set size when we
wish to achieve a good agreement with experiment. In the case of a small
four-electron system like LiH, when we are able to generate the FCI energies
even with a relatively good basis set, such as the cc-pVTZ basis, we clearly
see that the discrepancies with experiment arise almost entirely due to the
basis set limitation, rather than due to the approximations that are inher-
ent in the ecCCSD methods employed.

Our results leave little doubt that either of the ecCCSD methods employ-
ing the MR CISD wave function as the source of nondynamic correlation ef-
fects is capable of producing highly accurate and reliable potentials and the
implied spectroscopic data.
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